METHOD OF DESCRIBING THE HEAT EXCHANGER PERFORMANCE
نویسندگان
چکیده
منابع مشابه
Effect of baffle oientation on shell tube heat exchanger performance
In this paper, fluid flow and heat transfer in the laboratory (small size) shell tube heat exchanger are analysed by computational fluid dynamic software. In this type of shell tube heat exchanger baffles with different angles of rotation: 00 (horizontal segmental baffle), 150 (from horizontal), 300, 450, 600, 750, 900 (vertical segmental baffle) is used. Effect of baffle orientation on shell t...
متن کاملEffect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger
A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%,...
متن کاملAnalysis of Gasketed-plate Heat Exchanger Performance Using Nanofluid
A heat exchanger using nanofluid needs to operate at optimum mass concentration level to get the maximum heat transfer performance. A numerical analysis is performed on the heat transfer and pressure drop of water-based γ-Al2O3 nanofluid gasketed-plate heat exchanger to specify its optimum conditions. Cold water will be heated by γ-Al2O3/water nanofluid. The results showed that optimal volume c...
متن کاملEffect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger
A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%,...
متن کاملEstimating the unknown heat flux on the wall of a heat exchanger internal tube using inverse method
In the design of heat exchangers, it is necessary to determine the heat transfer rate between hot and cold fluids in order to calculate the overall heat transfer coefficient and the heat exchanger efficiency. Heat transfer rate can be determined by inverse methods. In this study, the unknown space-time dependent heat flux imposed on the wall of a heat exchanger internal tube is estimated by app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MM Science Journal
سال: 2018
ISSN: 1803-1269,1805-0476
DOI: 10.17973/mmsj.2018_12_201869